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Model
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Abstract— The navigation state (position, velocity, and attitude)
can be determined using optical measurements from an imaging
sensor pointed toward the ground. Extracting navigation infor-
mation from an image sequence depends on tracking the location
of stationary objects in multiple images, which is generally
termed the correspondence problem. This is an active area of
research and many algorithms exist which attempt to solve this
problem by identifying a unique feature in one image and then
searching subsequent images for a feature match. In general,
the correspondence problem is plagued by feature ambiguity,
temporal feature changes, and occlusions which are difficult for a
computer to address. Constraining the correspondence search to
a subset of the image plane has the dual advantage of increasing
robustness by limiting false matches and improving search speed.
A number of ad-hoc methods to constrain the correspondence
search have been proposed in the literature.

In this paper, a rigorous stochastic projection method is
developed which constrains the correspondence search space
by incorporating a priori knowledge of the aircraft navigation
state using inertial measurements and a statistical terrain model.
The stochastic projection algorithm is verified using Monte
Carlo simulation and flight data. The constrained correspondence
search area is shown to accurately predict the pixel location of
a feature with an arbitrary level of confidence, thus promising
improved speed and robustness of conventional algorithms.

I. I NTRODUCTION

I T is well-known that optical measurements provide ex-
cellent navigation information, when interpreted properly.

Optical navigation is not new. Pilotage is the oldest and most
natively familiar form of navigation to humans and other
animals. For centuries, navigators have utilized mechanical
instruments such as astrolabes, sextants, and driftmeters [12]
to make precision observations of the sky and ground in order
to determine their position, velocity, and attitude.

The difficulty in using optical measurements for au-
tonomous navigation, that is, without human intervention, has
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always been in the interpretation of the image, a difficulty
shared with Automatic Target Recognition (ATR). Indeed,
when celestial observations are used, the ATR problem in this
structured environment is tractable and automatic star trackers
are widely used for space navigation and ICBM guidance.
When ground images are to be used, the difficulties associated
with image interpretation are paramount. At the same time, the
problems associated with the use of optical measurements for
navigation are somewhat easier than ATR. Moreover, recent
developments in feature tracking algorithms, miniaturization,
and reduction in cost of inertial sensors and optical imagers,
aided by the continuing improvement in microprocessor tech-
nology, motivates us to consider using inertial measurements
to aid the task of feature tracking in image sequences.

The methods are typically classified as either feature-based
or optic flow-based, depending on how the image correspon-
dence problem is addressed. Feature-based methods determine
correspondence for “landmarks” in the scene over multiple
frames, while optic flow-based methods typically determine
correspondence for a whole portion of the image between
frames. A good reference on image correspondence is [7].
Optic flow methods have been proposed in the literature gener-
ally for elementary motion detection, focusing on determining
relative velocity, angular rates, or for obstacle avoidance [4].

Feature tracking-based navigation methods have been pro-
posed both for fixed-mount imaging sensors or gimbal
mounted detectors which “stare” at the target of interest,
similar to the gimballed infrared seeker on heat-seeking, air-to-
air missiles. Many feature tracking-based navigation methods
exploit knowledge (eithera priori, through binocular stereop-
sis, or by exploiting terrain homography) of the target location
and solve the inverse trajectory projection problem [1], [10].
If no a priori knowledge of the scene is provided, egomotion
estimation is completely correlated with estimating the scene.
This is referred as the structure from motion (SFM) problem.
A theoretical development of the geometry of fixed-target
tracking, with noa priori knowledge is provided in [11]. An
online (Extended Kalman Filter-based) method for calculating
a trajectory by tracking features at an unknown location on
the Earth’s surface, provided the topography is known is
given in [3]. Finally, navigation-grade inertial sensors and
terrain images collected on a T-38 “Talon” are processed
and the potential benefits of optical-aided inertial sensors are
experimentally demonstrated in [14].

Many methods for solving the correspondence problem have
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been proposed in the computer vision literature. A popular
algorithm is the Lucas-Kanade feature tracker [6], which
relies on the premise of the invariance of the intensity field
between images. It uses a template correlation algorithm to
minimize the sum of squared differences (SSD) between image
intensities. The algorithm typically assumes a linear (x − y
plane) motion model, but can be extended to optimize over
affine or bilinear transformations. Other feature correspon-
dence algorithms have been proposed which are invariant
to rotations, scaling or both. (e.g., [5]) More robust feature
tracking algorithms are typically computationally expensive
and a designer must trade tracking robustness and accuracy
for real-time performance.

This paper proposes an approach to optimize the feature
tracking problem by exploiting navigation information, derived
from six degree-of-freedom inertial measurements, and prior
terrain information, to constrain the correspondence search
space and aid the attendant optimization algorithm. The theory
is developed for a kinematic motion model with inertial
sensors.

The paper is organized as follows. Section II explores
current approaches for constraining correspondence searches
and discusses the strengths and weaknesses of such. Section III
poses the statistical projection problem in the most general
terms. Reasonable assumptions are proposed which make the
general problem tractable for use with an Extended Kalman
Filter algorithm. In Section IV, the mathematical model used to
describe the navigation state and navigation state uncertainty
is presented. This includes definition of reference frames,
navigation dynamics, perturbation model, and defines the
initial conditions. Section V builds upon the mathematical
model to derive the stochastic projection method. The resulting
equations allow the user to predict the pixel location and
uncertainty of a feature between two images. The stochastic
projection method is validated in Section VI using Monte
Carlo simulation and flight data. Finally, conclusions are
drawn regarding the performance of the method in Section VII.

II. CURRENT CORRESPONDENCECONSTRAINT

APPROACHES

Exploiting inertial measurements to constrain the corre-
spondence search has been proposed in the literature. In this
section, two methods which exploit inertial measurements are
discussed.

Bhanu and Roberts [2] utilize inertial measurements to
compensate for rotation between images and to predict the
focus of expansion in the second image. Once the second
image is derotated and the focus of expansion is established,
the correspondence between points of interest is calculated
using goodness-of-fit metrics. One relevant metric is the
correspondence search constraint placed on each point. This
constraint ensures each interest point lies in a cone-shaped
region, with apex at the focus of expansion, bisected by the
line joining the focus of expansion and the interest point in
the camera frame at the first image time. While this constraint
is not statistically rigorous, it does show the value of using
inertial measurements to aid the correspondence problem.

EPIPOLE

TARGET 1 
EPIPOLAR 

LINE

TARGET 2 
EPIPOLAR 

LINE

TARGET 1 C
ORRESPONDENCE SEARCH ZONE

TARGET 2 CORRESPONDENCE SEARCH ZONE

IMAGE PLANE

Fig. 1. Correspondence search constraint using epipolar lines. Given a
projection of an arbitrary point in an initial image, combined with knowledge
of the translation and rotation to a second image, the correspondence search
can be constrained to an area near the epipolar line. Note the epipole can be
located outside of the image plane, as shown in this example.

Strelow also incorporates inertial measurements to constrain
the correspondence search between image frames [15]. This
constraint on the image search space is a similar concept to
the field of expansion method proposed by Bhanu; however,
Strelow generalizes the approach by exploiting epipolar ge-
ometry.

The projection of an arbitrary point in an image is described
by an epipolar line in a second image. All epipolar lines
in an image converge at the projection of the focus of the
complimentary image. Combining knowledge of the transla-
tion and rotation between images and the pixel location of a
candidate target in the first image, a correspondence search can
then be constrained to an area “near” the epipolar line. This
approach is illustrated in Fig. 1. Strelow’s method of using
inertial measurements to constrain the correspondence search
along an epipolar line is ad-hoc, since the search space is not
defined statistically.

In the next Section, the correspondence problem is described
using a stochastic model. This model is then used to determine
a statistically-rigorous correspondence search area.

III. G ENERAL PROBLEM FORMULATION

The general problem is described as follows. Given a
pixel location of a specified landmark at timeti, predict the
probability density function of the pixel location of the same
landmark at timeti+1. Prior information regarding the vehicle
navigation state, terrain statistics, and the dynamics of the
vehicle and landmark are exploited.

Mathematically, the pixel location,z(ti), corresponding to
a landmark at locationy(ti) in the scene, is governed by the
nonlinear projection function

z(ti) = h [x(ti),y(ti), ti] (1)

wherex(ti) represents the navigation state at the time of the
measurement.

The vehicle and landmark dynamics are modeled by the
following non-linear It̂o stochastic differential equations in
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white noise notation,

ẋ=f [x(t),u(t), t] + Gx [x(t), t]wx(t) (2)

ẏ=r [y(t), t] + Gy [y(t), t]wy(t) (3)

whereu(t) is a known input function, andwx(t) andwy(t)
are white noise processes.

A theoretical formulation exists for this general problem,
however two issues make this solution intractable. First, the
measurement observation function is ill-posed (i.e., a unique
inverse does not exist). Second, propagating the conditional
probability density function in time requires solving the for-
ward Kolmogorov (i.e., Fokker-Planck) second-order partial
differential equation for an infinite number of moments [9].

To make the problem tractable, the following reasonable
assumptions are made:
• The prior knowledge of the navigation and target state

can be adequately described as a multivariate Gaussian
distribution.

• Additive measurement noise is zero-mean, Gaussian, and
white.

• Stochastic process noise is zero-mean, Gaussian, and
white.

• The nonlinear state dynamics and measurement equations
can be adequately modeled using perturbation techniques.

Although not required for tractability, additional assumptions
are made to simplify the development and clarify the underly-
ing concepts. First, the landmark is assumed to be stationary
with respect to the surface of the Earth (i.e.,r[y(t), t] =
0.) Second, the camera is rigidly mounted to the vehicle
with known alignment and calibration. Third, the terrain is
described by a statistical elevation model.

In the next section, the relevant reference frames and the
vehicle dynamics are defined.

IV. M ATHEMATICAL MODEL

A. Reference Frames

In this paper, three reference frames are used. Variables
expressed in a specific reference frame are indicated using
superscript notation. The Earth-Centered Earth-Fixed (ECEF,
or e frame) is a Cartesian system with the origin at the
Earth’s center, thêxe axis pointing toward the intersection
of the equator and the prime (Greenwich) meridian, theẑe

axis extending through the North pole, and theŷe axis is the
orthogonal compliment (in this paper, a carat symbol,,̂ denotes
a unit vector). The navigation state is expressed in thee frame.

The vehicle body frame (orb frame) is a Cartesian system
with origin at the vehicle center of gravity, thêxb axis extend-
ing through the vehicle’s nose, thêyb axis extending through
the vehicle’s right side, and thêzb axis points orthogonally
out the bottom of the vehicle. The inertial measurements are
expressed in theb frame.

The camera frame (orc frame) is a Cartesian system with
origin at the center of the camera image plane, thex̂c axis
is parallel to the camera image plane and defined as “camera
up”, the ŷc axis is parallel to the camera image plane and
defined as “camera right”, and thêzc axis points out of the
camera aperture, orthogonal to the image plane.

xc

yc

zc

Fig. 2. Camera frame illustration. The camera reference frame
originates at the center of the focal plane.

B. Vehicle State and Dynamics

The vehicle state of interest consists of position (pe),
velocity (ve), and direction cosine matrix of the body to ECEF
frame (Ce

b). From [16], the vehicle state kinematics are

ṗe = ve (4)

v̇e = Ce
bf

b − 2Ωe
iev

e + ge (5)

Ċe
b = Ce

bΩ
b
ib −Ωe

ieC
e
b (6)

where f b is the specific force vector measured by the ac-
celerometers,Ωe

ie is the Earth’s sidereal angular rate vector
in skew-symmetric form,ge is the gravitational acceleration
vector, andΩb

ib is the angular rate of the vehicle relative to
the inertial frame in skew-symmetric form and measured by
the gyroscopes.

C. Perturbation Model

The navigation errors are defined as differences from a
nominal trajectory and are represented as a position error
(δpe), a velocity error (δve), and an attitude error (ε) vector,
defined as:

p̃e(t) = pe(t) + δpe(t) (7)

ṽe(t) = ve(t) + δve(t) (8)

C̃e
b(t) = [I3 − (ε(t)×)]Ce

b(t) (9)

where the tilde represents a nominal parameter. The error state
is modeled as a zero-mean Gaussian random vector

δx(t) =




δpe(t)
δve(t)
ε(t)


 (10)

with covariance defined as

E[δx(t)δxT (t)] = Pxx(t) (11)

whereE[·] is the expectation operator.
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Using perturbation techniques, the dynamics of the naviga-
tion error states are modeled as a linear stochastic differential
equation [8]

δẋ(t) = F(t)δx(t) + Gx[x̃e(t), t]wx(t) (12)

where wx(t) is a zero-mean, white Gaussian noise process
with covariance kernel

E[wx(t)wT
x (t + τ)] = Qx(t)δ(τ). (13)

D. Initial Conditions

At the time of the first image,ti, the navigation error state
is a zero-mean Gaussian random variable with covariance,
Pxx(ti). The terrain elevation,h, is a random variable with
mean, h̃, and variance,σ2

h. The terrain elevation errors are
assumed to be independent of the navigation errors.

V. STOCHASTIC PROJECTIONTHEORY

The theory is divided into three sections: estimating the
initial landmark position and covariance based on the pixel
location of the feature selected in the first image, using inertial
measurements to propagate this augmented state to the time
of the second image, and projecting this landmark position
state onto the second image as a probability density function
in pixel coordinates. In simpler terms, these equations allow
us to “predict” where a stationary feature should appear in
subsequent images, thus providing a statistical measure to
constrain our search space within the image.

A. Landmark Error Statistics

The landmark position corresponding to a pixel location is
a non-linear function of the navigation state, pixel location,
z(ti), terrain elevation,h, camera to body direction cosine
matrix, Cb

c, and homogeneous camera projection matrix,Π
(see [7] for a description):

ye = g
[
pe(ti),Ce

b(ti), z(ti), h,Cb
c,Π

]
(14)

The pixel location measurement at timeti is a non-linear
function of the navigation state, landmark position, and camera
parameters:

z̃(ti) = h[pe(ti),Ce
b(ti),y

e(ti),Cb
c,Π]

+v(ti) (15)

where v(ti) is a zero-mean, additive white Gaussian noise
process with:

E[v(ti)v(tj)] =
{

R(ti) ti = tj
0 ti 6= tj

(16)

Similarly to the navigation state, the calculated landmark
position, ỹe, is also modeled as a perturbation about the true
position:

ỹe = ye + δye (17)

and is a function of the calculated trajectory

ỹe = g
[
p̃e(ti), C̃e

b(ti), z̃(ti),C
b
c,Π

]
(18)

Applying perturbation techniques to the landmark position
function, the landmark error,δye, can be expressed as a linear
function of the errors of the navigation state, terrain model,
and pixel measurement model

δye = Gyxδx + Gyhδh + Gyzv(ti) (19)

where the influence coefficients

Gyx =
∂g
∂x

∣∣∣∣
x̃,h̃,z̃(ti),Cb

c,Π

(20)

Gyh =
∂g
∂h

∣∣∣∣
x̃,h̃,z̃(ti),Cb

c,Π

(21)

Gyz =
∂g
∂z

∣∣∣∣
x̃,h̃,z̃(ti),Cb

c,Π

(22)

and
δh = h̃− h (23)

Using the linearized position measurement, the landmark
error is a zero-mean, Gaussian random vector. The land-
mark error covariance,Pyy(ti), and cross-correlation matrices,
Pyx(ti), are defined as

Pyy(ti) = E[δyδyT ] (24)

Pyx(ti) = E[δyδxT ] (25)

Substituting (19) into (24), and noting the independence be-
tween navigation state, terrain, and pixel measurement errors
yields:

Pyy(ti) = GyxE[δxδxT ]GT
yx

+GyhE[δh2]GT
yh

+GyzE[v(ti)vT (ti)]GT
yz (26)

Substituting the previously defined covariance matrices for the
navigation errors, terrain, and pixel measurement yields the
final form of the landmark position error covariance.

Pyy(ti) = GyxPxx(ti)GT
yx + Gyhσ2

hG
T
yh

+GyzRGT
yz (27)

The cross-correlation matrices are calculated in a similar
manner and are expressed as:

Pxy(ti) = Pxx(ti)GT
yx (28)

Pyx(ti) = GyxPxx(ti) (29)

B. State Propagation

In this section, the nominal navigation state, navigation error
state, and landmark error states are propagated from timeti
to ti+1.

The nominal aircraft navigation state is propagated forward
based on the non-linear dynamics model given in Equations
(4-6), typically using a non-linear differential equation solver
(e.g., Runge-Kutta) [13].

The landmark error dynamics are defined as a random walk:

δẏ = Gywy(t) (30)
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where wy(t) is a zero-mean, white Gaussian noise process
with covariance kernel

E[wy(t)wT
y (t + τ)] = Qyδ(τ) (31)

The navigation error stochastic differential equation is defined
in Equation (12) as

δẋ(t) = F(t)δx(t) + Gx[x̃e(t), t]wx(t) (32)

The navigation and landmark error covariance propagation
dynamics are derived using the linearized dynamics mod-
els (12),(13),(30),(31) [9]:

Ṗxx(t) = F(t)Pxx(t) + Pxx(t)FT (t)
+Gx(t)Qx(t)GT

x (t) (33)

Ṗxy(t) = F(t)Pxy(t) (34)

Ṗyy(t) = GyQyGT
y (35)

An equivalent expression for the time propagation is rep-
resented by the state transition matrix,Φ(ti+1, ti), which
projects the navigation and landmark error covariance from
time ti to ti+1 [8]. The resulting expression for the navigation
and landmark error covariance is

Pxx(ti+1) = Φ(ti+1, ti)Pxx(ti)ΦT (ti+1, ti)

+
∫ ti+1

ti

Φ(ti+1, τ)GxQxGT
x ·

ΦT (ti+1, τ)dτ (36)

Pxy(ti+1) = Φ(ti+1, ti)Pxy(ti) (37)

Pyy(ti+1) = Pyy(ti)
+(ti+1 − ti)GyQyGT

y (38)

C. Projection of Uncertainty Statistics onto Image

The pixel projection function is used to project the naviga-
tion state and landmark location into the image plane at time
ti+1. The pixel projection is

z(ti+1)=h[pe(ti+1),Ce
b(ti+1),ye(ti+1),

Cb
c,Π] (39)

The estimated pixel location error,δz(ti+1), is modeled as a
perturbation about the nominal pixel location

δz(ti+1) = z̃(ti+1)− z(ti+1) (40)

where the nominal pixel location,̃z(ti+1), is calculated using
the nominal navigation state and landmark position

z̃(ti+1) = h[p̃e(ti+1), C̃e
b(ti+1), ỹe(ti+1),

Cb
c,Π] (41)

Perturbing the pixel projection function, the pixel location
error can be expressed as a linear function of the errors of the
navigation state and landmark position:

δz(ti+1) = Hzxδx(ti+1) + Hzyδy(ti+1) (42)

where

Hzx =
∂h
∂x

∣∣∣∣
x̃,ỹ,Cb

c,Π

(43)

Hzy =
∂h
∂y

∣∣∣∣
x̃,ỹ,Cb

c,Π

(44)

The pixel error covariance,Pzz(ti+1), is defined as

Pzz(ti+1) = E[δzδzT ] (45)

Substituting (42) into (45), and eliminating independent error
sources yields the pixel location covariance:

Pzz(ti+1) = HzxPxx(ti+1)HT
zx

+HzxPxy(ti+1)HT
zy

+HzyPT
xy(ti+1)HT

zx

+HzyPyy(ti+1)HT
zy (46)

Finally, the covariance of the pixel location errors can
be summarized by combining the equations presented in the
previous sections:

Pzz(ti+1)=HzxΦ(ti+1, ti)Pxx(ti)ΦT (ti+1, ti)HT
zx

+Hzx

∫ ti+1

ti

Φ(ti+1, τ)GxQxGT
x ·

ΦT (ti+1, τ)dτHT
zx

+HzxΦ(ti+1, ti)Pxx(ti)GT
yxH

T
zy

+HzyGyxPxx(ti)ΦT (ti+1, ti)HT
zx

+HzyGyxPxx(ti)GT
yxH

T
zy

+HzyGyhσ2
hG

T
yhH

T
zy

+HzyGyzRGT
yzH

T
zy

+(ti+1 − ti)HzyGyQyGT
y HT

zy (47)

This equation shows how an initial covariance,Pxx(ti),
height uncertainty,σ2

h, measurement noise (characterized by
R), and process noise (characterized byQx andQy) can be
projected to the image plane at a later time,ti+1, as expressed
by Pzz(ti+1).

In summary, given the pixel coordinates of a stationary
ground landmark at timeti, the predicted pixel coordinates
of the same landmark at timeti+1 can be described by the
bivariate Gaussian probability density function given in Equa-
tion (47). Thus, the correspondence search for the landmark
can be constrained using a statistical confidence threshold.
In the following section, the stochastic projection method is
used to predict the location (and uncertainty) of a stationary
landmark in an image.

VI. EXPERIMENT

The experiment validates the stochastic projection method
using both simulated and real data collected from an airborne
system. In this experiment, a Northrop T-38 “Talon” aircraft
was equipped with a day-night monochrome digital video cam-
era synchronized to a Honeywell H-764G Inertial Navigation
System. The camera was mounted in the cockpit, pointing out
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Fig. 3. Northrop T-38 instrumented with synchronized digital video camera
and inertial navigation system.

the right wing. Flight data were collected in Fall of 2002 at
Edwards Air Force Base, California.

A Monte Carlo simulation of the test flight is performed
to verify the stochastic projection model with respect to a
statistically significant sampling of random error contributors.
While this provides an indication of the adequacy of the sys-
tem model, flight test data are used to verify the performance
of the algorithm in a real-world environment.

A. Monte Carlo Simulation

The performance of the stochastic projection method pre-
sented in Section V was verified using a statistically represen-
tative ensemble of sample functions (300 per run). The data
collection system used on the T-38 flights was simulated in
software, based on a reference trajectory chosen to generate
an interesting observation geometry. This constant-altitude cir-
cular flight path was constructed such that a fixed terrain patch
remained in the camera field of view throughout the flight. The
simulated aircraft speed was 150 meters-per-second, altitude
was 2296 meters, and bank angle was 27 degrees which
described a circular flight path with 4592 meter radius. The
resulting slant range to the landmark was 5134 meters. The
terrain elevation was simulated as a zero-mean random vari-
able. Simulations were accomplished using a terrain elevation
error standard deviation of 25 meters, representing a moderate
accuracy terrain model. All simulations used a 10 second inter-
val between the first and second image, which was equivalent
to 18.7 degrees of arc in the horizontal plane. The simulation
geometry is shown in Fig. 4.

The results are shown in Fig. 5. In this figure, the predicted
pixel location errors for each Monte Carlo sample function
are represented by a “plus” symbol. The predicted 2-σ pixel
location error bound is indicated by a line. Note the inclined
elliptical nature of the 2-σ bound is a function of the trajectory
and measurement geometry.

The same predicted pixel location errors are shown refer-
enced to a 256×256 pixel image in Fig. 6. The stochastic
constraint method shows a small correspondence search area
which gives the highest probability of the landmark location.
The stochastic constraint method is an improvement over the
epipolar line search method as it provides a smaller search

AREA OF INTEREST

Fig. 4. Simulated flight path. In order to generate a good observation
geometry, the circular orbit was chosen such that a fixed terrain patch remained
in the camera field of view throughout the flight.
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Fig. 5. Landmark pixel location error and predicted 2-σ bound for 25 meter
terrain elevation uncertainty. Note the actual pixel location errors are similar
to the predicted error bound.Note: X and Y axes have differing scales to show
detail.

area developed using a statistical model. This results in faster
and more robust correspondence searches.

B. Flight Data

In this section, the stochastic projection method is imple-
mented using image and inertial flight data collected on the
T-38 aircraft. The aircraft state dynamics are a function of the
measurements from the strapdown inertial sensors. All states
are estimated in the Earth-centered Earth-fixed reference frame
previously defined. The error equations were developed based
on [16], [17]. For this example, a three image sequence from a
right turning profile is shown in Fig. 7. The results of the above
method for predicting the future target location and uncertainty
are shown in Fig. 8.

The target selected was the west corner of a building shown
in Fig. 7. The estimated target location and 2-σ variance
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Fig. 7. Three image sequence of an industrial area recorded during a T-38 flight, with a sample stationary ground landmark identified. Image (b) was taken
1 second after image (a). Image (c) was taken 7 seconds after image (a). The aircraft is in a right turn approximately 3.8 kilometers from the landmark.

(a
)

Base Image (2X Zoom)

(b
)

Image 1 (2X Zoom)

(c
)

Image 2 (2X Zoom)

Fig. 8. Predicted landmark location uncertainty using stochastic projection method. The landmark selected was the west corner of a building in the base
image (a), represented by the crosshair. Using the stochastic projection method, the landmark mean and 2-σ variance is projected into two subsequent images
to demonstrate the concept. The estimated landmark location and predicted 2-σ variance for image (b) shows an ellipsoidal uncertainty after one second of
flight. Image (c) shows a further increase in the uncertainty after seven seconds of flight. In each subsequent image, constraining the correspondence search
for the landmark to the ellipsoidal region reduces the required search area and would eliminate false matches with other features with a similar appearance
(e.g., other building corners).
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Fig. 6. Landmark pixel location error and predicted 2-σ bound for 25 meter
terrain elevation uncertainty referenced to a 256×256 pixel image. Note the
stochastic constraint can limit the correspondence search area significantly
compared to a search near the epipolar line.

shown in Fig. 8 shows an predicted ellipsoidal uncertainty
after one second and seven seconds of flight. Note the uncer-
tainty ellipse increases with flight time, as expected. In each
case, incorporating camera motion information can constrain
the correspondence search space significantly. Note the true
landmark location remains consistent with the predicted 2-σ
uncertainty ellipse in the presence of real measurement noise
and terrain model errors.

VII. C ONCLUSIONS

In this paper, a stochastic projection method to incorporate
the statistics of navigation dynamics and target motion mod-
els is developed to project the estimated pixel location and
uncertainty of a landmark between two images. The theory is
statistically rigorous. Thus, results derived from simulations
and actual flight data validate the accuracy of the approach
for a number of realistic scenarios.
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